字:
关灯 护眼
优秀小说 > 股狼孤影 > 第162章 数据采集

第162章 数据采集

    第162章 数据采集 (第2/3页)

深300ETF等主要期权品种的成交量、持仓量、看涨/看跌比率(PCR),以及不同行权价期权的隐含波动率,用以构建“波动率微笑”曲线。PCR和波动率微笑的形态,是衡量市场对尾部风险定价和情绪偏好的高级工具。

    【技术实现与挑战】

    • 股指期货和融资融券数据相对规范,易于获取和处理。关键是建立基差、融资盘变化等衍生指标的实时计算和可视化监控。

    • 期权数据相对小众,接口可能受限,数据复杂度高。陆孤影决定初期将其作为观察项,不纳入核心情绪指数计算,但尝试建立数据管道,为未来模型升级做准备。

    ------

    第三类:文本与舆情数据

    这是捕捉市场“噪音”和“叙事”情绪的关键,也是技术难度最高、最需要创新的一环。情绪不仅体现在价格上,更体现在人们的言语和关注之中。

    【采集目标与方式】

    1. 财经新闻情感分析:

    ◦ 采集源: 主流财经媒体网站、客户端推送的新闻标题和摘要。通过网页爬虫(遵守Robots协议,控制频率)或购买专业的新闻舆情数据API。

    ◦ 处理流程: 爬取新闻文本 -> 文本清洗(去除HTML标签、无关字符) -> 中文分词 -> 情感词典匹配与机器学习情感分析模型判断。陆孤影结合现有的开源中文情感词典(如知网Hownet、大连理工大学情感词汇本体),并针对金融文本特点(如“利好”、“利空”、“暴涨”、“暴跌”、“看好”、“谨慎”等词汇)进行了扩充和加权。同时,他训练了一个简单的基于神经网络的文本分类模型,用于判断新闻标题/摘要的情感倾向(积极、消极、中性)。

    ◦ 输出: 生成“新闻情绪指数”,可以按时间(如每小时)统计积极新闻、消极新闻的比例和数量变化,也可以对不同媒体(如官媒、券商研报、财经自媒体)进行分别统计,观察情绪差异。

    2. 社交媒体与股票论坛舆情监控:

    ◦ 采集源: 选取用户活跃、代表性强的股票论坛(如东方财富股吧、雪球等)、财经垂直社交媒体。通过其公开API(如有)或基于HTTP请求的爬虫,定向抓取热门帖子列表、帖子内容、回复、以及阅读数、点赞数、转发数等互动数据。严格注意频率控制,避免对目标服务器造成压力,并遵守相关法律法规和数据使用规范。

    ◦ 处理流程: 这是真正的挑战。论坛文本噪音极大,包含大量无意义的灌水、表情符号、谐音、网络用语、甚至是故意误导的信息。陆孤影设计了一套复杂的清洗和分析流程:

    ▪ 热度分析: 计算不同股票、板块的讨论热度(发帖量、回复量、阅读量),识别市场关注焦点。

    ▪ 关键词提取与情感分析: 除了通用的情感分析,他更关注能直接反映市场情绪的特定金融情感关键词。他建立了两套词库:

    ▪ 贪婪/乐观词库: 如“牛市”、“涨停”、“主升浪”、“十倍”、“抄底”、“满仓干”、“发财”、“牛市起点”、“格局”、“锁仓”、“价值投资”(在特定语境下可能被滥用)等。

    ▪ 恐惧/悲观词库: 如“熊市”、“跌停”、“割肉”、“清仓”、“销户”、“套牢”、“崩盘”、“股灾”、“救市”、“跑路”、“绝望”、“关灯吃面”等。

    ▪ 通过统计这些关键词在单位时间窗口内出现的频率、密度,以及其所在帖子的互动热度,构建“论坛贪婪指数”和“论坛恐慌指数”。同时,分析“牛市/熊市”等关键词的比率变化。

    ▪ 主题识别与演化: 尝试使用LDA等主题模型,识别一段时间内论坛讨论的主要话题(如“高送转”、“业绩预增”、“政策利好”、“外围大跌”),并观察话题热度的演变,这能反映市场情绪的“叙事”结构。

    3. 搜索引擎指数:

    ◦ 采集源: 利用公

    (本章未完,请点击下一页继续阅读)
『加入书签,方便阅读』